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Abstract 

 There is a research field called a fluctuating system. In systems such as Brownian motion, the particles of interest 
exchange kinetic energy from white noise and perform a random walk. The Langevin equation handles these events and 
takes up fine particle friction and microwave irradiation to confirm the operation of the system. In this paper, we 
incorporate microwave irradiation into the Maxwell-Boltzmann distribution and confirm that its non-thermal energy 
exhibits the so-called "microwave effect". As a sample case using correlated noise, two-dimensional Ising model is 
proposed as a specific example of Monte Carlo simulation. Results will vary depending on the strength of the noise 
correlation. In this way, the noise-to-noise correlation has a strong effect on physical quantities. 

1. Introduction 
   Methodologies have been paid attention for tracking 
non-equilibrium thermodynamic fluctuations in the 
materials. Specific examples include substances such as 
clusters and colloids, and molecular motors.[1] It has been 
experimentally confirmed that fine particles such as pollen 
show Brownian motion, and it is theoretically known that 
white noise shows a random walk accompanied by the 
Langevin equation. The situation is further complicated 
by the input of energy into the system by microwaves. 
Friction occurs when clusters and colloids move, white 
noise transmission due to collisions with other particles, 
and microwave irradiation. They conflict with each other 
to determine the behavior of the system. 

  In this paper, we will consider how kinetic energy can 
be introduced into the reaction speed. We will discuss the 
reaction speed of the system, taking into account the three 
quantities of microwave, white noise, and friction. 

  In general, the energy loss due to friction and the white 
noise received from other particles compete with each 
other to determine the movement of the particles. For 

example, it is reported that the reaction time of 
microwaves is 4 hours and the time required for a specific 
reaction by heat transfer is 40 hours,[2] which is exactly 
the effect of microwaves. Here, noise with a time-
correlation is proposed as a random number. This is used 
to examine the noise dependence of the reaction speed. 

And then, time-correlated noise is taken as an example 
of statistical mechanics. It is to be important the last result 
of this paper. 
  As a system, we will consider liquid H2O as an example 
of microwave active material, and the Ising model can be 
considered as an application using correlated noise. 
 
2. Formulation 
  Since we are considering liquid H2O as a system, it is 
heated by microwaves and a phase transition from liquid 
to gas occurs. To give a broader example, chemical 
reactions can be discussed in the same way. As a model, 
the system surrounded by a heat bath with a constant 
temperature and volume is treated.  
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Fig. 1 Schematic diagram of the epi-thermal distribution 
of continuously irradiated microwave. The middle line is 
a cross section of the microwave at a point in time 𝑡𝑡. The 
distribution function does not depend on time because the 
system is surrounded by a heat bath.  
 
  In this system, microwave is continuously applied. At 
this point 𝑡𝑡 , the epi-thermal distribution function is 
considered clipped, as shown in Fig. 1. This epi-thermal 
distribution function loses its peak with the passage of 
time due to friction between particles, and eventually 
becomes heated and changes to a normal distribution 
function. However, since the system is in contact with the 
heat bath, the shape of the distribution function does not 
change at continuous time. The time scale taken up in Fig.  
1 is seconds, but the time scale until the microwave falls 
into heat is 𝜇𝜇𝜇𝜇 . Therefore, local temporal heating by 
microwaves is not observed on the scale of seconds, and 
it looks the same as normal heating such as electric 
heating. 
  The Langevin equation is introduced as equation of 
motion containing a fine particle with existing of random 
work. In the case of one particle surrounded by many 
particles, it can be written as follows. 
 

𝑚𝑚𝑑𝑑𝑣𝑣�⃗
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝑟𝑟 + 𝜆𝜆 + 𝑃𝑃�⃗ × 𝐸𝐸�⃗                       (1) 
 
Here, 𝛾𝛾 is the coefficient of friction, 𝜆𝜆 is white noise, 𝑃𝑃�⃗  is 
the polarization coefficient, respectively. The quantity 𝐸𝐸�⃗  
is electric field of single mode microwave, and the 
concrete formula is 𝐸𝐸�⃗ (𝑥𝑥, 𝑡𝑡) = 𝐸𝐸�⃗ 0𝑒𝑒𝑥𝑥𝑒𝑒(𝑖𝑖𝑖𝑖𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑡𝑡) . The 
sample size (few 𝑐𝑐𝑚𝑚3) of this study is much smaller than 
1/𝑖𝑖 (𝑖𝑖~10−6 order), so there is no need to think about 
spatial changes. Further mentioning the time change, since 
the frequency is GHz, it is an oscillation on a scale on the 
order of 10−9 [s]. The order is different by 103 because 
the time scale considered is 10−6  [s]. Therefore, the 
vibration of the electric field takes an approximation that 
considers only the large modulation. 
  If 𝜆𝜆 is removed from Eq. (1), it becomes the equation of 
motion of the polarization element in 𝐸𝐸�⃗ . When the average 
velocity is calculated from the Maxwell-Boltzmann 
distribution, the kinetic energy is consumed by friction, so 
that the average velocity does not depend on time, and 

there is no time evolution of the system. Since 𝜆𝜆 fluctuates 
as a function of time, Eq. (1) becomes a function of time. 
This is the reason why Eq. (1) includes noise and 
microwave. 
  Considering the kinetic energy, energy conservation 
formula is as follows, 
 

𝑊𝑊𝜇𝜇 = ∫ 𝑑𝑑𝑟𝑟 ∙ �−𝛾𝛾𝑟𝑟 + 𝜆𝜆 + 𝑃𝑃�⃗ × 𝐸𝐸�⃗ �𝑟𝑟𝑓𝑓
𝑟𝑟𝑖𝑖

            (2) 
 
 Here, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑓𝑓 mean initial and final positions, respectively. 
White noise 𝜆𝜆 =(𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3,) in general, 
 

〈𝜆𝜆𝑖𝑖(𝑡𝑡)𝜆𝜆𝑗𝑗(𝑡𝑡′)〉 = 𝛿𝛿𝑖𝑖𝑗𝑗Δ𝑑𝑑,𝑑𝑑′                    (3) 
 
is defined like this. The white noise defined here has a 
characteristic time determined by the frequency factor. 
That is, white noise has a value of Δ𝑑𝑑,𝑑𝑑′ = 1 at 𝑡𝑡 − 𝑡𝑡′ =
0.1  [𝑚𝑚𝜇𝜇 ], and otherwise Δ𝑑𝑑,𝑑𝑑′ = 0 . On the other hand, 
δ𝑖𝑖𝑗𝑗 = 1  for 𝑖𝑖 = 𝑗𝑗 , and 𝛿𝛿𝑖𝑖𝑗𝑗 = 0 for 𝑖𝑖 ≠ j. So, time factor 
Δ𝑑𝑑,𝑑𝑑′ is unusual definition of noise. But this definition is 
important in this study. 

  As the certain fine particles, molecules and 
polarizations generally follow the Maxwell-Boltzmann 
distribution function, but for the introduction of 
microwave monochromatic energy, one must consider 
that there will always be a peak in the Maxwell-
Boltzmann distribution function. This is called the epi-
thermal distribution.  
   As an example, let's define and explain a distribution 
function that takes two positions. 

  We introduce the multiplication type distribution 
function.[3] 
 

𝑓𝑓𝑀𝑀(𝑣𝑣) = 𝑓𝑓0(𝑣𝑣)𝑔𝑔𝑀𝑀(𝑣𝑣)                              (4) 

𝑓𝑓0(𝑣𝑣) = �
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝑚𝑚𝑣𝑣2

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�              (5) 

𝑔𝑔𝑀𝑀(𝑣𝑣) = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝛿𝛿𝑣𝑣,𝑣𝑣𝜇𝜇
𝑊𝑊𝜇𝜇
𝑘𝑘𝐵𝐵𝑇𝑇

�                        (6) 

�̅�𝑣 = ∫ 𝑣𝑣𝑓𝑓𝑀𝑀(𝑣𝑣)𝑑𝑑𝑣𝑣∞
0
∫ 𝑓𝑓0(𝑣𝑣)𝑑𝑑𝑣𝑣∞
0

= �2𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝑚𝑚

𝑒𝑒𝑥𝑥𝑒𝑒 �𝑊𝑊𝜇𝜇
𝑘𝑘𝐵𝐵𝑇𝑇

�      (7) 

 
Here, Eq. (4) is the epi-thermal distribution function, Eq. 

(5) is the usual Maxwell-Boltzmann distribution function, 
Eq. (6) is the epi-thermal component of distribution 
function, Eq. (7) is the average velocity obtained from Eqs. 
(4)-(6), respectively. And 𝛿𝛿𝑣𝑣,𝑣𝑣𝜇𝜇 ,𝑊𝑊𝜇𝜇  are Kronecker delta 
and kinetic energy caused by noise. It should be noted that 
the exp term in Eq. (7) is multiplied by the usual velocity 
distribution.  The initial M means multiplication and 
indicates the monochromatic appearance of the 
microwave immediately after it is turned on. 

Using the expression epi-thermal distribution, thermal 
energy and non-thermal energy are mixed on the same 
graph. The peak structure is non-thermal energy, and it 
takes 𝜇𝜇𝜇𝜇 to change to thermal energy. 
  We introduce an added type distribution function.[4] 
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𝑓𝑓𝐴𝐴(𝑣𝑣) = 𝑓𝑓0(𝑣𝑣) + 𝑓𝑓0(𝑣𝑣)�𝑣𝑣 − 𝑣𝑣𝜇𝜇�𝑔𝑔𝐴𝐴(𝑣𝑣)              (8) 

𝑔𝑔𝐴𝐴(𝑣𝑣) = �
𝑚𝑚(𝑣𝑣−𝑣𝑣𝜇𝜇)2

2𝜋𝜋𝑊𝑊𝜇𝜇
𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑚𝑚(𝑣𝑣−𝑣𝑣𝜇𝜇)2

2𝑊𝑊𝜇𝜇
�              (9) 

�̅�𝑣 = ∫ 𝑣𝑣𝑓𝑓𝐴𝐴(𝑣𝑣)𝑑𝑑𝑣𝑣𝑣𝑣𝑐𝑐
0
∫ 𝑓𝑓0(𝑣𝑣)𝑑𝑑𝑣𝑣𝑣𝑣𝑐𝑐
0

≅ �2𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝑚𝑚

�1 + 𝑊𝑊𝜇𝜇  �        (10) 

𝑊𝑊𝜇𝜇 = 𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇√𝜋𝜋

�𝑣𝑣𝑐𝑐
2

2
+ 𝑣𝑣𝜇𝜇2

4
� 𝑒𝑒𝑥𝑥𝑒𝑒 �2𝑣𝑣𝑐𝑐

𝑣𝑣𝜇𝜇
− 1�         (11) 

 
Here, 𝑣𝑣𝜇𝜇 is defined by dumping point velocity. The cutoff 
𝑣𝑣𝑐𝑐 is introduced to prevent the divergence of the integral. 
The initial A means to add. Eq. (8) shows the following. 
It means moving particles in a distribution with low 
kinetic energy based on the velocity of 𝑣𝑣𝜇𝜇 to a region with 
high kinetic energy by microwave energy. In order to 
make the cutoff easy to understand, letting, 𝑣𝑣𝑐𝑐 = 2𝑣𝑣𝜇𝜇, Eqs. 
(10), (11)  become simple as follows.   

�̅�𝑣 = �2𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝑚𝑚

�1 + �̀�𝑊
𝑘𝑘𝐵𝐵𝑇𝑇

�                        (12) 

with �̀�𝑊 = 9𝑚𝑚𝑒𝑒3𝑣𝑣𝜇𝜇2/8√𝜋𝜋 . It can be seen that �̀�𝑊  is 
introduced in the form of addition to the usual distribution 
function. Whether this multiplication type distribution in 
Eqs. (4)-(7) or addition type distribution Eqs. (8)-(12) 
becomes important because multiplication type shows 
initial state and addition type shows medium state of time 
scale, respectively. From multiplication to addition, the 
reaction speed changes shape over time. 
    Eqs. (4) and (8) are not normalized in the form of 
including microwave peaks. This is because the peak is 
not thermal energy. The microwave peak of the epi-
thermal Maxwell-Boltzmann distribution in Eq. (4) is 
listed in the same figure, but is a separate physical quantity.  
In Eq. (8), the Maxwell-Boltzmann distribution and the 
microwave peak are partially mixed, and the situation is 
different from Eq. (8). After a few 𝜇𝜇𝜇𝜇, the non-thermal 
peak turns completely thermal energy due to friction with 
other particles. Eq. (4) shows the state immediately after 
the microwave is injected, and Eq. (8) shows the state in 
which non-thermal energy accelerates particles slower 
than the peak. This means the passage of time when 
microwave is applied. 
  The reaction speeds 𝜅𝜅𝑀𝑀, 𝜅𝜅𝐴𝐴 are obtained for the case of 
the definition formula Eq. (4) to be multiplied by the 
distribution function and the case of the definition formula 
Eq. (8) to be added. [4] 
 

𝜅𝜅𝑀𝑀 = 𝑞𝑞‡

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏

𝑘𝑘𝐵𝐵𝑇𝑇
ℎ
𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝐸𝐸∗−𝑊𝑊𝜇𝜇

𝑘𝑘𝐵𝐵𝑇𝑇
�             (13) 

𝜅𝜅𝐴𝐴 = 𝑞𝑞‡

𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏

𝑘𝑘𝐵𝐵 𝑇𝑇+�̀�𝑊
ℎ

𝑒𝑒𝑥𝑥𝑒𝑒 �− 𝐸𝐸∗

𝑘𝑘𝐵𝐵𝑇𝑇
�           (14) 

 
Here, the quantities 𝑞𝑞‡, 𝑞𝑞𝑎𝑎 and 𝑞𝑞𝑏𝑏 are partition functions 
for phase (chemical) change, state a and state b, 
respectively. It is noteworthy that Eqs. (13), (14) are in 
perfect agreement with the results of Nagata & 
Kodama.[5] 
   The velocity 𝑣𝑣𝜇𝜇  and energy 𝑊𝑊𝜇𝜇 , �̀�𝑊  have not 
substantially discussed time dependence. Then, Eq. (15) 
is newly defined as a time-dependent kinetic energy as a 

value indicating the influence of these. 
 

𝑤𝑤𝜇𝜇 = �𝑃𝑃(𝜆𝜆𝑗𝑗)𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑡𝑡 − 𝑡𝑡𝑗𝑗
𝜏𝜏

Θ�𝑡𝑡𝑗𝑗��
𝑗𝑗

 

−∑ ∫ 𝑑𝑑𝑟𝑟𝑗𝑗 ∙ �−𝛾𝛾𝑟𝑟𝑗𝑗 + 𝑃𝑃�⃗𝑗𝑗 × 𝐸𝐸�⃗ �𝑟𝑟𝑓𝑓
𝑟𝑟𝑖𝑖𝑗𝑗               (15) 

 
Here, 𝑤𝑤𝜇𝜇 = 𝑊𝑊𝜇𝜇/ℎ is normalized kinetic energy, 𝑃𝑃(𝜆𝜆𝑗𝑗) is a 
Gaussian distribution probability as a function of 𝜆𝜆𝑗𝑗. Also,  
𝜏𝜏 is the relaxation time of the decay of kinetic energy, and 
Θ(𝑡𝑡𝑗𝑗) is the step function. As a result, Eq. (15) defines an 
equation that ticks 𝑗𝑗  over time at intervals of about 
frequency factor 10 kHz. [5] This equation takes into 
account friction loss, energy gain from the microwave 
field, and noise. 
  Taking the average of the random numbers of many fine 
particles in the first term of Eq. (15) gives the following 
relationship. 
 

∑ ∑ 𝑃𝑃�𝜆𝜆𝑗𝑗,𝑘𝑘�𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑−𝑑𝑑𝑗𝑗,𝑘𝑘

𝜏𝜏
Θ�𝑡𝑡𝑗𝑗,𝑘𝑘�� = 0 𝑗𝑗

∞
𝑘𝑘      (16) 

 
where 𝑖𝑖 is an index of fine particle number of interest. 
This is the numerical calculation result. The important 
thing is that the average of random numbers will be zero. 
The Eq. (16) means the kinetic energy of the system is 
preserved. Therefore, the problem of the many fine 
particles system is competition of friction and the energy 
given by microwave independent of one fine particle's 
noise.   

  Now let's change the topic from H2O to magnetization. 
The partition function can be defined by using time-
correlated noise. 
 

𝑍𝑍 = ∑ 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑊𝑊𝑗𝑗,𝑘𝑘

𝑘𝑘𝐵𝐵𝑇𝑇
�                                  𝑗𝑗,𝑘𝑘 (17) 

𝑊𝑊𝑗𝑗,𝑘𝑘 = 𝑊𝑊0𝑃𝑃�𝜆𝜆𝑗𝑗,𝑘𝑘�𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑑𝑑−𝑑𝑑𝑗𝑗,𝑘𝑘

𝜏𝜏
Θ�𝑡𝑡𝑗𝑗,𝑘𝑘��       (18) 

〈𝑋𝑋〉 = ∑ 𝑊𝑊𝑗𝑗.𝑘𝑘

𝑍𝑍
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑊𝑊𝑗𝑗,𝑘𝑘

𝑘𝑘𝐵𝐵𝑇𝑇
�                          𝑗𝑗,𝑘𝑘 (19) 

By using Eqs. (17)-(19) statistical mechanics quantities in 
time-correlated noise can be calculated. If we propose 
some kind of fluctuating physical quantity, a distribution 
function by time-correlated noise is defined and the 
thermodynamic quantity 〈𝑋𝑋〉 can be calculated. Since this 
statistical mechanics method usually requires the 
accumulation of many samples, it is useful to treat the 
noise distribution function defined here in that the number 
of samples is small. 

 As an application example of correlated noise, the Ising 
model can be considered, and it is generally known that it 
exhibits ferromagnetism. The formulation of Ising model 
is, 
 

𝐻𝐻 = −𝐽𝐽∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗 − ℎ∑ 𝑆𝑆𝑖𝑖𝑖𝑖〈𝑖𝑖,𝑗𝑗〉                (20) 
 
The spin of Ising model is defined by 𝑆𝑆𝑖𝑖 = 1/2 for sample 
number 𝑖𝑖 ∈ [0: 0.5] and 𝑆𝑆𝑖𝑖 = −1/2 for 𝑖𝑖 ∈ [0.5: 1] in the 
prepared correlation noise [0:1] defined by first term of  



JEMEA Journal Vol.6 (2022.12) 
 

37 

 
 
Fig.2 Extended distribution function. (a) When the 
distribution function is disturbed by multiplication. (b) 
When a disturbance is added to the distribution function 
by addition. 

 
Fig.3 Schematic diagram of reaction speed by Langevin 
equation. (a) When the distribution function is disturbed 
by multiplication. (b) When a disturbance is added to the 
distribution function by addition. The quantities W 
oscillate with time. 
 
Eq. (15). The quantities 𝐽𝐽 and ℎ is defined by interaction 
energy between nearest neighbor spins and exchange 
energy under the magnetic field, respectively. 
 
3. Results and Discussion 

The calculated results of Eqs. (4),(8) are shown in Fig. 2. 
In Fig. 2(a), the microwave energy has a delta functional 
type peak structure. On the other hand, in Fig. 2(b), the 
dumping structure can be seen. When a microwave is 
input at 𝑡𝑡 = 0, the energy is applied to the system as a 
delta functional peak. Here, thermal energy (Maxwell-
Boltzmann distribution) and microwave energy (peak 
structure) should be understood separately. 
  Schematic diagrams of the reaction speed are shown in 
Fig. 3 plotting Eqs. (13), (14). In Fig. 3(a), the energy of 
the activated complex 𝐸𝐸∗ is reduced by the quantity 𝑊𝑊𝜇𝜇.  
On the other hand, Fig. 3(b) shows vibration of energy �̀�𝑊 
in state a. In both cases, the reaction speed is accelerated. 
These Figs. 2(a) and (b) correspond to Figs. 3(a) and (b), 
respectively. The difference in the behavior of these peaks  
is the passage of time. These corresponds to raising the 
level of basic energy, and means that phase transitions and 
chemical changes can occur more easily below the 
transition temperature.  
   Here, by introducing white noise with a frequency factor 
of 10kHz to the reaction speed again, the effect of noise 
can be introduced to the reaction speed. Since the  

 
 
Fig.4 Time-dependent kinetic energy. (a), (d) Friction = 
microwave irradiation (b), (e) Friction > microwave 
irradiation (c), (f) Friction < microwave irradiation, 
respectively. And then, (a), (b), (c) for one fine particle 
and (d), (e), (f) for average of 100 fine particles, 
respectively. 
 
relaxation time of microwaves is several 𝜇𝜇𝜇𝜇,[3] the time 
resolution is much lower than the frequency factor 
10kHz,[6] that is, 0.1ms. Therefore, the noise effect is 
updated for each frequency factor and applied to the 
reaction speed. Here, the Fig. 4 shows the kinetic energy 
defined by the Eq. (15). The noise is no longer white noise, 
but time-dependent correlated noise defined by the 
expression the first term of Eq. (15).  
  Fig. 4 shows three correlations of friction, microwave 
irradiation, and correlated noise in the Eq. (15) as a 
function of time. Figs. 4(a), (b) and (c) show the kinetic 
energy of a single fine particle, and Figs. 4(d), (e) and (f) 
show the average kinetic energy of 100 fine particles. This 
means kinetic energy is preserved at the system as in the 
Eq. (16). The difference in 𝜏𝜏 is the strength of the inter-
noise correlation. If 𝜏𝜏 is small, the noise correlation is  
weak, and if 𝜏𝜏  is large, the noise correlation is strong. 
Since 𝜏𝜏 is the scattering memory of the fine particles, and 
it is generally said that the first memory is lost after three 
collisions, 𝜏𝜏=3 is a reasonable number.   In all discussions, 
when the microwave outweighs the friction, the kinetic  
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Fig.5 Spontaneous spin polarization at zero magnetic field 
and induced spin polarization under magnetic field in 
Ising model. The solid line indicates that there is no 
magnetic field, and the dotted line indicates that the 
magnetic field is applied. The noise-to-noise correlation is 
set to 𝜏𝜏 = 1, 5[𝑚𝑚𝜇𝜇]. 
 
energy rises as a function of time, and conversely, when 
the friction outweighs the microwave, the kinetic energy 
decays as a function of time. 

In this calculation, the ergodic theorem that the time 
mean and the population mean are equal is used.  

Eqs. (17)-(19) is applied to the 2D Ising model Eq. (20) 
with periodic boundary condition. The 100 sites of 
10 × 10 are shown as one sheet, 50 sheets are prepared, 
and the Monte Carlo simulation method uses the noise 
represented by Eq. (15). It can be seen in Fig. 5 that the 
spin polarization increases and shows a constant value at 
low temperature region. This value rises when an external 
magnetic field is introduced, but it shows a constant value 
even at zero magnetic field. This predicts the emergence 
of a spontaneous magnetic field and meets the 
requirements of this model. The difference between 𝜏𝜏 = 1 
and 5 is whether the inter-noise correlation is weak or 
strong. The correlation of spins between cells in the Ising 
model is not included in the calculations by the usual 
Monte Carlo method. Due to the inter-noise correlation 
defined in this paper, the phase transition temperature at 
which magnetization   occurs changes depending on the 
magnitude of 𝜏𝜏.  
 
4. Summary 
   In this paper, we have examined two ways of thinking 
of the Langevin equation as an epi-thermal distribution 
function, and have looked at the interpretation of the two 
reaction speeds. As a result, the reaction speed has 
increased in both cases. Here, we have defined the system 

follow the epi-thermal Maxwell-Boltzmann distribution. 
Although the forms of reaction speed are different, there 
is no substitute for the conclusion that the reaction speed 
increases in both cases. The important point here is that 
the reaction rate is discussed below the transition 
temperature. Energy exceeding the transition temperature 
can be obtained by superimposing microwave energy on 
thermal energy and adding noise energy. 

  Furthermore, as kinetic energy, energy loss due to 
friction, energy acquisition by microwaves, and energy 
transmitted from correlated noise during particle 
movement have been concretely shown as a function of 
time. These friction and microwave energy have showed 
that the kinetic energy have competed as a function of 
time. Here, when one fine particle has moved, it has been 
a well-known random walk. On the other hand, when the 
motion of many particles has been averaged, the 
messiness disappears and only the friction energy loss due 
to noise in the entire system. Energy loss has been caused 
only by friction, and that to be heat by diffusion process. 
   The method of statistical mechanics for the 2D Ising 
model has been calculated as a Monte Carlo simulation. 
Here, time-correlation has been introduced as noise. As a 
result, it has become clear that the curvature of the spin 
component has depended on the magnitude of the 
correlation. In this way, when dealing with physical 
quantities where correlation becomes important, it has 
been predicted that this correlation will become important. 

  Thus, the effect of correlated noise determined by the 
frequency factor is expressed as the Brownian motion of 
one particle of interest. This effect defines a new 
correlated noise for each frequency factor with respect to 
reaction rate. This is different from the conventional 
Monte Carlo simulation. 
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