技術論文

マイクロ波加熱による炭素繊維の製造と複合材料化の検討

Examination of Carbon Fiber Production by Microwave Heating and Composite Material

杉山順一^{1,3,*}、鈴木慶宜^{2,4}、土岐 輝^{2,4}、圖子博昭^{2,4}、 田中玲人³、八木皓平³、峯岸礼子³、森住真紀³、羽鳥浩章^{1,3} Jun-ichi Sugiyama^{1,3}, Yoshinori Suzuki^{2,4}, Akira Toki^{2,4}, Hiroaki Zushi^{2,4}, Reeto Tanaka³, Kouhei Yagi³, Reiko Minegishi³, Maki Morizumi³, Hiroaki Hatori^{1,3}

1. (国研) 産業技術総合研究所、2.帝人(株) 技術開発部、

3.新構造材料技術研究組合つくば小野川分室、4.新構造材料技術研究組合三島分室
1.〒305-8565 茨城県つくば市東1-1-1 中央第5、2.〒411-8720 静岡県駿東郡長泉町上土狩234、
3.〒305-8569 茨城県つくば市小野川16-1、4. 〒411-8720 静岡県駿東郡長泉町上土狩234

- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
 - Technical Development Department, Teijin Limited, 234, Kamitogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8720, Japan
 - Tsukuba-Onogawa Branch, Innovative Structural Materials Association (ISMA), in AIST Tsukuba west, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
 - Mishima Branch, ISMA, in Teijin Mishima Factroy, 234, Kamitogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8720, Japan

corresponding author*, e-mail address: sugiyama-j@aist.go.jp,

キーワード:炭素繊維、円筒導波管、導電性材料、高周波シフト、複合材料

Keywords: carbon fiber, cylindrical waveguide, conductive material, high-frequency shift, composite materials

Abstract

The application of carbon composite materials in new fields such as automotive materials requires an innovative carbon fiber manufacturing process that halves manufacturing energy and CO_2 emissions while significantly increasing productivity. This study investigated the continuous heating of precursor fibers using microwaves as an innovative carbon fiber production method. As a result, carbon fibers with a high-performance index were obtained. In addition, the physical properties of composite materials using the carbon fibers obtained in this study showed good indices.

1. 緒言

自動車等の新たな分野へ活用を広げるため、炭素繊維の製造エネルギー・CO2 排出量の半減及び生産性の

大幅向上を両立させた革新的な炭素繊維製造プロセス が求められている。基盤技術の開発を行い、産業技術 へとつなげていくことを目的に、高多機能炭素繊維を 創出する検討を行った。ポリアクリロニトリル(PAN) を前駆体とする炭素繊維は一般に、PAN 繊維を空気中 で穏やかに加熱して耐炎化した後に不活性雰囲気下の 高温で炭素化して得る。本研究では耐炎化糸を原料と して、マイクロ波加熱による連続的な炭素繊維の合成 を行うとともに、得られた繊維を用いて複合材料の性 能評価を行ったところ、高い性能指標を得たので報告 する。

2. 炭素繊維のマイクロ波応答

耐炎化糸を加熱して得る炭素繊維について、その電 磁波応答の性質をあらかじめ知っておくことは装置設 計の上で重要である。そこで炭素繊維の電界に対する 摂動を評価した[1,2]。円筒空洞共振器法は円筒中心-円筒側面間で生じる TM020 定在波に対し、円筒中心に 繊維状物質を装荷することで繊維に与えられた電界の 摂動を評価できる。一般に装荷によって電磁界分布が 大きく変化しない誘電体に対して用いることが前提で ある。炭素繊維自体は導電性を持つため大きく電磁界 分布を変化させる可能性があるが、炭素繊維自体が非 常に小さいことで分布形状の変化が小さくなることを 想定した。式 1.2 を用いて得られる複素比誘電率 $\epsilon_r^*=\epsilon_r'-i\epsilon_r$ "は導電性材料に対し、複素導電率 σ^* が加算さ れて式3に示す複素比電界応答率 ψr*の応答となる。こ こで α_nは円筒空洞共振器における定数であり TM₀₀₀定 在波の n=1 においては 1.855、n=2 においては 4.318、 また Os、O。はそれぞれ装荷時、非装荷時の測定 O 値で ある。

$$\varepsilon_{\rm r}' = \frac{\pi r_{\rm c}^2}{\alpha_{\rm n} S_{\rm s}} \left(\frac{f_{\rm c} - f_{\rm s}}{f_{\rm c}} \right) + 1 \qquad (1)$$

$$\mathcal{E}_{\rm r}^{"} = \frac{\pi r_{\rm c}^2}{2\alpha_{\rm n}S_{\rm s}} \left(\frac{1}{Q_{\rm s}} - \frac{1}{Q_{\rm c}}\right)$$
 (2)

$$\psi_{\rm r}^* = \mathcal{E}_{\rm r}^* + \frac{\sigma^*}{\omega \mathcal{E}_0} \tag{3}$$

$$\delta = \frac{1}{\sqrt{\pi f \,\mu\sigma}} \tag{4}$$

市販炭素繊維(単糸径 7 µm、引張強度 4.0 GPa、引 張弾性率 240 GPa) 1 本に対する TM₀₂₀@2.45 GHz 円筒 空洞共振器の測定結果を Fig.1 に示す。

Fig.1. S₂₁ parameter from TM₀₂₀ resonator.

空洞内の空洞容積/試料量の比を共振器断面積 πr_c^2 / 単糸断面積 S_s の比に同じとすると、装荷試料の断面積 は共振器の95万分の1と算定される。また材料の導電 率が後述のように高いとしても、式4において σ =10,000~50,000 Sm⁻¹の範囲から得られる浸透深さ δ =100~30 µm に比べてこの単糸径は非常に小さく、電 界は内部まで浸透しているとみなせる。測定の結果、 Q 値の大きな低下と共に、非装荷時共振周波数 f_c に対 し装荷時共振周波数 f_s が高周波数側に現れる現象が確 認された。共振周波数の高周波シフトは $f_c f_s$ が負とな るため、式1に基づく値は負となる。複数回測定され た f_c, f_s, Q_c, Q_s から平均して ψ_r *=-9,000-j28,500 と評価し た。

摂動法による複素比電界応答率 ψ_r *によって装荷時 に高周波シフトが起こった現象から、比誘電率 ϵ_r が負 の値を示すように捉えられるが、この解釈は正しくな い。比誘電率とは、真空を伝搬する電磁波の速度 $c=(\epsilon_0\mu_0)^{0.5}$ に対し、物質内を伝搬する電磁波の速度 $v=(\epsilon\mu)^{0.5}$ とした時の比に基づいて表される値である。物 質内を伝搬する電磁波の速度は決して光速 cを超えな いため、 ϵ_r は理論上1未満にはならない。よって Fig.1 より得られた ψ_r *=-9,000-j28,500の実部が負を示した現 象には何らかの理由が必要となる。この解釈について は三つの理由が考えられる。

第一の理由は、比透磁率 μ_r *を1-j0と仮定したことに よる前提の誤りである。誘電体は非磁性体であり確か に磁性応答がないが、導電体は通常反磁性を持ってい る。よって電磁波の伝搬速度をvの実部とするなら、 μ_r *=1-j0とは限らないため、 $v=(\epsilon\mu)^{-0.5}$ から求めた ϵ_r 'の値 は真の値から遠ざかる可能性がある。

第二の理由は、電界摂動時にて試料内の電流発生に 起因した磁界排斥である。円筒空洞共振器の中心から 側面までの断面と電束密度Dおよび磁束密度Bの最大 振幅を Fig.2 に示す。①は無負荷、②は誘電体の装荷を 示す。なお Fig.2 は説明のため TM010 モードを用い、試 料および関数の変化を誇張して記述している。空洞共 振器内のDは共振器上底および下底に存在する電荷密 度分布に、B は D の微分に由来する。誘電体装荷では 誘電体内の波長短縮によりDを示す第1種0次ベッセ ル関数の根が内側に移動するため、共振器半径が rcの まま共振条件を満たすには、試料装荷時の共振周波数 f。は無負荷時の共振周波数f。より低周波数側に現れる。 一方、導電体の装荷では、印加されたDに基づき電流 が発生し、装荷試料の周囲に磁界が発生する③のモデ ルが考えられる。電流で新たに発生した B の向きはす でに場にある B の向きと同じである。装荷試料から同 向きのBの発生は、装荷物質外部に向けてBを排斥す るため、Bを示す第1種1次ベッセル関数が外側に移 動する。これに伴いDの根は外側すなわち円筒側面側 に移動するため、rcのまま共振条件を満たすにはfsを 上げなければならない。したがって装荷における共振 周波数が高周波数側に現れる現象は、電流発生が無視 できない場合に生じると考えられる。本現象の解釈に ついては境界条件を厳密に定める電磁界解析により詳 細な解が得られると考えられる。

第三の理由として、共振器内で計測している速度が 位相速度であることが挙げられる。導波管内を伝搬す る電磁波の位相速度は光速より大きいが、これは管内 を複数回反射する波動が干渉して同位相点間の距離を 大きくしたものであって、エネルギーが c 以上の速度 で伝搬したものではない。摂動法は無負荷状態と装荷 状態の差を測定するため、いずれの測定でも位相速度 を測定していることになるが、屈折率を二乗した n²が 負の値を示すことで共振周波数の高シフト化、すなわち式1によって ε[']が負となりえる。これは複素屈折率 n*=n'-jn"において n'<n"の際に実部が負として現れる。 すなわち、屈折率 n'に対し吸収率 n"が大きい場合に生 じる。

伝搬の n'に対し吸収の n"が大きいのは、その物質の エネルギー損失量が大きいとも考えられる。しかし摂 動法の場合、測定しているのは電界エネルギーのみで あることを考慮しなければならない。導電性試料の場 合、電界印加時にジュール熱損失による純粋な損失が あるが、電流発生による磁界発生も電界エネルギーか ら磁界エネルギーへの変換であるため、損失に換算さ れる。第二の理由にて説明した磁界発生による排斥は この事象とも合致する。またその場合、誘導電流によ る磁界摂動も同時に起きているとも考えられるため、 先述のμ*を 1-j0 と仮定した前提の誤りとも合致する。

複素屈折率 n'と n"の大小の関係が共振周波数の高シ フトまたは低シフトに影響しているのであって、帯電 等の一時的な試料状態に依存するものではないことは Fig.1の測定条件において他の周波数帯を同時に調べた 結果からも示される。2.45 GHz にて TM₀₂₀ モードが現 れる円筒空洞共振器は、1.07 GHz にて TM₀₁₀ モードの 共振状態をとることができる。Fig. 1 で 2.45 GHz 帯に て ψ_t *=-9,000-*j*28,500 と評価された試料は、同時に測定 された 1.07 GHz 帯では装荷によって f_s が低シフトし、 ψ_t *=+38,000-*j*610,000 を示した(Fig.3)。

Fig.3. S₂₁ parameter from TM₀₁₀ resonator

Fig.1 及び Fig.3 で得られた $\psi_r^* を式3 によって導電率 \sigma^*$ と評価した場合、 $|\sigma|$ および σ'' は数千~数万 Sm⁻¹ の値 となる。金属の導電率は一般に実部虚部の表記的区別 なく、百万 Sm⁻¹のオーダーで示され、例えば焼鈍標準 軟銅の体積抵抗率の逆数は58 MSm⁻¹である。以上より、 炭素繊維材料は導電性ではあるが、金属の千分の1程 度の導電率であることが示された。

3. 炭素繊維製造におけるマイクロ波加熱の要点

目的物である炭素繊維の電磁波応答挙動を得たこと で加熱炉の設計、及び運転時の動作予測が可能となっ た。そこで加熱炉のため、炭素化の検討を行った。原 料に用いた耐炎化糸は主として 24,000 本のフィラメン トからなるレギュラートウ前駆体(24K)を用いた。耐炎 化糸は炭素含有量が低い黒色の繊維であり、ポリアク リロニトリルが部分的に酸化された骨格を持つ。一部 のニトリル三重結合は耐炎化工程で架橋反応が進み、 ポリマー鎖ははしご型構造をとる。そのため、通常の ビニルモノマー系の付加型高分子とは異なり、加熱に よるアクリロニトリルへの解重合は抑制され、炭素化 が進行する。

耐炎化糸は導電性や磁性がなく、誘電体として振る

舞う。この段階ではマイクロ波で直接加熱する場合、 誘電加熱が有効となる。酸化ポリアクリロニトリル骨 格は残存する窒素-炭素結合により分極を示すが、高分 子鎖内に取り込まれた構造であって2.45 GHz帯の外部 電界の印加に対しては応答性が低い。したがって電界 の集中印加が必要となる。ところが多重結合の付加反 応など、炭素化反応が進行し始めると、これは発熱反 応であるとともに、集中した電界エネルギーをより多 く吸収するホットスポットとなるため、熱暴走が誘発 されやすくなる。加えて、反応生成物である炭素化繊 維は黒鉛構造へと変化した導電体であり、前項で示し たように電界損失が非常に大きくなる。大きな電磁気 学的物性の変化が生じるとモードが保たれずに変化す る。このようなケースでは、例えばマルチモード型オ ーブンを用いた加熱では導電性部分への加熱集中によ る加熱斑が発生する、あるいは単純な共振器を用いた 加熱では共振周波数や整合条件の大きな変動が起こる、 などの運転の不安定化が生じる。加熱の不安定性は搬 送方向における加熱ムラ、あるいは搬送繊維の毛羽立 ちや糸切れによるローラー絡まり、または切断などを 誘発し、品質の低下、および作業工程の低下を誘発す るため、これを回避する必要がある。

これに対し我々は、加熱炉として TM01型円筒導波管 を用いることで解決を図った[3,4,5]。誘電体繊維が装 荷された場合、TM01型導波管内では繊維上に、繊維と 平行方向に電界(緑太矢印)が印加され、繊維の構成 分子は反電界作るように構造変化する (Fig. 4)。この時 の振動位相ずれにより誘電加熱が起こる。繊維が加熱 されて導電性が生じると、炉内の電磁界分布は TEM モ ードに変換され、繊維上に電流(水色太矢印)が生じ て導電加熱が起こる(Fig. 5)。モード変換位置は繊維の 搬送条件によって任意の場所となるが、誘電体部の TM01 モードと導電体部の TEM モードは電界および磁 界の対称性が円周方向、径方向で共に類似しているた め、変換が起きても連続性が損なわれない。したがっ て、誘電体から導電体への転移点が搬送によって移動 してもモード形状の大きな変化が生じないため、整合 が保たれる。これは自動整合器を使用する場合、制御 のハンチングを抑制する手段として有効である。

Fig.4. TM₀₁ mode for the dielectric strand.

Fig.5. TEM mode for the conductive strand.

TM₀₁ モードへの電力供給は TE₁₀ モード矩形導波管 を接続した矩形-円筒変換導波管により行った。加熱 炉のモデル構造のシミュレーションをFig.6 に示す。Fig. 6 下は Fig. 6 上の位相 90 度後であり、TM₀₁モードから TEM モードへの連続的な変換が示されている。

TEM モードは遮断周波数がないため、導波管径を小 さくしても漏洩を防ぐことはできない。しかしながら 得られた炭素繊維自体が吸収体となる。したがって円 筒導波管終端の短絡構造、あるいはその後のスリーブ 内で繊維が十分な吸収を示す場合は、炉から導電性繊 維を通じた電磁波の漏洩の考慮は不要となる。

シミュレーション結果を基にして TM₀₁ 型照射炉を 作成した。検討の結果、照射運転は安定な定常状態に 収束することが示され、糸切れなどのプロセス停止や、 糸搬送方向の加熱斑を無くすことができた。連続加熱 によりレギュラートウ前駆体(24,000本のフィラメント の束:24K)からは引張強度 3.8 GPa、引張弾性率 223 GPa の炭素繊維、またラージトウ前駆体(48,000本のフィラ メントの束:48K)からは引張強度 3.1 GPa、引張弾性率 220 GPa の炭素繊維を得た。

4. 複合材料の物性

マトリックスにポリアミド-6 (PA6)を用い、得られた24Kの連続繊維を複合材料とした。一方向プリプレグによるプレス成形品、及びチョップドファイバーによる射出成形品を製作し、市販の炭素繊維から得た同条件の成形品と比較評価を行った。成型品のイメージをFig.7 に示す。

Fig.7. Composite materials. left: press-formed products, right: injection-molded products.

炭素繊維自体の物性(引張強度、引張弾性率)には 市販の炭素繊維と差異があったため、複合材料物性に 対する炭素繊維物性の利用率を基準に評価した結果、 市販品とほぼ同等であることが分かった。Fig.8 にプレ ス成形品の結果を一例として示すが、1)引張強度、2) 引張弾性率、4)圧縮弾性率、6)曲げ弾性率でやや劣るも のの、3)圧縮強度、5)曲げ強度はいずれも遜色がなかっ た(Fig.8) [6,7,8]。

Fig.8. Ratio of physical properties of the press-molded products considering volume fraction of fiber. 1: Tensile Strength, 2: Tensile Modulus, 3: Compressive Strength, 4: Compressive Modulus, 5: Flexural Strength, 6: Flexural Modulus; Commercial carbon fiber = 1.

5. 結論

前駆体繊維から連続搬送で炭素繊維を製造すること を目的として、炭素繊維単糸の摂動法評価、電磁界シ ミュレーション、照射炉設計及び製作、炭素繊維製造 運転、並びに複合体制作と物性評価を行った。炭素繊 維のマイクロ波に対する応答では導電性材料に起因す るとみられる摂動時の高周波数シフトが見られた。

また炭素化に基づく、誘電体から導電体への急激な 物性変化でも電磁界モードが連続となる TM₀₁ 型導波 管を用い、24K レギュラートウ、48K ラージトウの炭 素繊維を得た。またこれを用いた複合材料化の物性評 価の結果、繊維の物性が向上すれば良好な性能が発現 することが期待できる結果となった。

6. 謝辞

本研究は NEDO 委託事業「革新的新構造材料等研究 開発/革新炭素繊維基盤技術開発」の成果であり、謝 意を示す。

引用文献

- 杉山順一,森住真紀,圖子博昭,第10回日本電磁 波エネルギー応用学会シンポジウム講演要旨集, 1B01, pp.52-53, 2016.
- [2] 杉山順一, 森住真紀, 圖子博昭, 信学技報, MW2016-82, pp.47-52, 2016.
- [3] 羽鳥浩章, 革新的新構造材料等研究開発平成 30 年 度成果報告会ポスター集, pp.40-41, 2019.

[4] ISMA Report 14, pp.1-4, 2019.

- [5] 杉山順一,鈴木慶宜,土岐輝,圖子博昭,田中玲人, 八木晧平,峯岸礼子,羽鳥浩章,第13回日本電磁波 エネルギー応用学会シンポジウム講演要旨集, 1B01, pp40-41, 2019.
- [6] 羽鳥浩章, 革新的新構造材料等研究開発 2020 年度 成果報告会ポスター集, pp.44-45, 2021.
- [7] 鈴木慶宜, 土岐輝, 杉山順一, 羽鳥浩章, 強化プラ スチックス, 67(11), pp.474-477, 2021.
- [8] 杉山順一,鈴木慶宜,土岐輝,圖子博昭,田中玲人, 八木晧平,峯岸礼子,羽鳥浩章,第15回日本電磁波 エネルギー応用学会シンポジウム講演要旨集, 1A08, pp.52-53, 2021.

Manuscript received: Sep. 27, 2022 Revised: Nov. 5, 2022 Accepted: Nov. 12, 2022