プログラム 第1日目(11月17日) 午前の部

n+ 88	第1日目(11月17日) 午前の部 A会場 B会場			
時間	環境・材料プロセッシング 座長 滝沢 博胤(東北大学)	生体・医療応用 座長 浅野 麻実子(大阪薬科大学)		
9:00-9:20	加圧マイクロ波条件下での酸化チタン触媒によるPETのアルコール分解 TiO ₂ catalyzed alcoholysis of PET under pressurized microwave	電磁界解析によるミリ波を用いた非侵襲血糖値測定の感度向上 Simulation Analysis of Sensitivity Improvement for Noninvasive Measurement of Blood Sugar Level Using Millimeter Waves		
	(崇城大学工学部ナノサイエンス学科) 〇池永 和敏、梅木焦、児玉龍士、末吉幸太	(国士舘大学大学院 工学研究科) 〇黒子 美咲、二川 佳央、大屋 隆生		
9:20-9:40	マイクロ波印加による層状珪酸塩(粘土)鉱物中のCsイオン置換 Exchange of Cs Ion in Phyllosilicate (Clay) Minerals by Microwave Irradiation (東北大・環境科学A、東北大学生B) 〇吉川 昇A、角剛B、御子柴駿B、谷口尚司A	MRIを用いたRFパルス熱エネルギー変換応用のためのファントム内部非侵襲温 Noninvasive Temperature Measurement in Phantom Model for Pulsed Radio Wave Transformation to Thermal Energy Using MRI (国士舘大学A、東京医療専門学校B、前田鍼灸院C) 〇中村 優A、中村 真通B、前田 栄一C、二川 佳央A		
9:40-10:00	CFRP繊維のマイクロ波加熱機構の解明 Microwave heating mechanism of CFRP fiber (豊田中央研究所A、ニッシンB、トヨタ自動車C) 〇福島英沖A、本田剛B、藤立隆史B、八田健C	プロテオミクス技術へのマイクロ波化学の適用 Application of Microwave Chemistry to Proteomics Analysis (九工大院・生命体工・生体機能A、九工大院・情報エ・生命情報工B、東理大・理エ・応用生物C、(株)ベセルD) 〇白石 新A、吉村 武朗C、児玉 克D、大内 将吉AB		
10:00-10:20	マイクロ波加熱におけるヘマタイト準安定温度 1A04 Concept of quasi-stable temperature of microwave heated materials (中部大学・工学部A、東京工業大学B、京都大学生存圏研究所C) 〇樫村 京一郎A、林幸B、三谷友彦C、篠原真毅C、永田和宏B	マイクロ波加熱による無細胞蛋白質発現系 Microwave-assisted Cell-free protein synthesis system (東京理科大学・理工A、九州工大・理工B) 〇吉村 武朗A、峯木 茂A、大内 将吉B		
10:20-10:30		休憩		
	材料プロセッシング 座長 吉川 昇(東北大学)	計測・解析・シミュレーション 座長 佐野 三郎(産総研)		
10:30-10:50	マイクロ波プロセッシングによるSnO-GeO2系新規相の合成 1A05 New phase in SnO-GeO2 system synthesized by microwave processing (東北大・エ) 〇佐藤 希、林大和、福島潤、滝澤 博胤	生体情報を取得するため人体近傍に配置したボウタイアンテナの特性検討 1B05 Study on Bowtie Antenna Arranged Near the Human Body for Acquisition of Biological Data (国士舘大学大学院・工学研究科) 〇平栗 一也、二川 佳央、大屋 隆生		
10:50-11:10	マイクロ波プロセスによるSm ₂ Fe ₁₇ N _x の合成 1A06 Synthesis of Sm ₂ Fe ₁₇ N _x by microwave processing (東北大院・エ) O岩淵 靖幸、福島 潤、林 大和、滝澤 博胤	マイクロ波場可視化とエネルギー変換素子の研究 1B06 Study on Visualization and Energy Conversion Devices for Microwave Fields (国士舘大学大学院・工学研究科) 〇二川 佳央、中村 優、工藤 大和		
11:10-11:30	マイクロ波炭素熱還元窒化法による γ -Al ₂ O ₃ を用いた窒化アルミニウム(AIN)の Synthesis of aluminum nitride (AIN) by microwave carbothermal reduction and nitridation (東北大院・エ) 〇千頭 英明、福島 潤、林 大和、滝澤 博胤	(株式会社 科学技術研究所) 		
11:30-11:50	マイクロ波照射における局所温度勾配存在下での物質拡散メカニズムの解明 1A08 (東北大院・エ) 〇福島 潤、林 大和、滝澤 博胤	A 経験的な誘電緩和式の数理解析 Mathematical analysis of the empirical relationship of the dielectric-relaxation (産業技術総合研究所) ○杉山 順一、森住 真紀、佐藤 千佳		
11:50-12:50	图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图			

第1日目(11月17日) 午後の部

時間	第1日目(ロ月17日) 午後の部 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
H/J [H]		ポリマー基板上における銀粒子薄膜の2段階マイクロ波焼成		溶液のミクロ・マクロな構造がマイクロ波加熱に与える影響	
12:50-13:10		Two-Step Microwave Sintering of Ag Particle Thin Film Coated on Polymer Substrate		Phenomenon of microwave heating in micro and macro scale of solution	
	1A09	(東工大院·工A、千葉大B)	1B09	(上智大学·理工)	
		〇川村 慎一郎A、望月 大A、藤井 知B、米谷 真人A、鈴木 榮一A、和田 雄二A			
				マイクロ波化学における被照射系の温度管理の意味、および、昇温過程から見	
		マイクロ波加熱を用いたポリマー基板上への薄膜形成		積もられる誘電パラメータ	
13:10-13:30	1 4 1 0	Formation of Metal Thin-Film on Polymer Substrate Using Microwave Heating	1B10	Meaning of Temperature Control of Microwave Irradiated System, and Dielectric Parameters	
10.10 10.00	1710		1510	Estimated from Temperature Increasing Process	
		(東工大院·工)		(九工大院·生命体工·生体機能A、九工大院·情報工·生命情報工B)	
		〇山田 拓也、望月 大、米谷 真人、鈴木 榮一、和田 雄二		〇岩橋 伸幸A、大内 将吉AB	
		マイクロ波照射下における金属酸化物の自己発熱作用を用いたFTO膜の作製		電磁界損失の古典物理的表現	
13:30-13:50	1A11	Preparation of FTO thin film by microwave heating technique	1B11	Classic physical expression of the electromagnetic loss	
		(静岡大院工A、静岡大グリーン研B)		(産業技術総合研究所)	
		O大橋 拓也A、武藤 栄A、奥谷 昌之AB		〇杉山 順一、森住 真紀、佐藤 千佳	
		水熱処理したガラス粉末のマイクロ波照射による発泡		導電率と誘電率の分離 ロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
13:50-14:10	1A12	Foaming of hydrothermally treated glass powder by irradiation of microwave	1B12	Separation of the conductivity and the permittivity	
		(高知大・理)		(産業技術総合研究所)	
		〇柳澤 和道、松本 未来、恩田 歩武		〇杉山 順一、森住 真紀、佐藤 千佳	
		フロー型マイクロ波リアクターを用いたPd@PtおよびCu@Agコアシェル粒子の連続 Continuous syntheses of Pd@Pt and Cu@Ag core—shell nanoparticles using microwave flow reactor		紛体の相当熱伝導率の検討 Fatimation of Company diag Thomas Conductivity of Povedoned Material	
14:10-14:30	1A13	(產業技術総合研究所A、(株)新光化学工業所B)	1B13	Estimation of Corresponding Thermal Conductivity of Powdered Material (株式会社 科学技術研究所)	
		○宮川 正人A、日吉 範人A、甲田 秀和B、佐藤 剛一A、宮沢 哲A、鈴木 敏重A、西		○藤田 明希	
1100 1110			休憩	الدارة المهرس المرادة	
14:30-14:40		特別講演 (白鳳)座長		雄二(東工大)	
	JEMEAが開始する「物性値データベース」は研究者・開発者にどう役立つか				
	1S01	Why Database Is			
		〇和田雄二A、藤井知B、羽石直人A、望月大A	、米谷耳	夏人A、鈴木榮一A(東工大院理工A、千葉大B)	
		誘電率透磁率データベース化の活動]状況 -	データベースWGの紹介と運営方法	
14:40-15:40	1S02			up for permittivity and permeability database	
		〇福島 英沖			
	1S03	誘電率、透磁率			
		Development of Database for Pe	ermitt	ivity and Magnetic Permeability	
		┃ ○藤田 明希(株式	会社	科学技術研究所)	
		Efficient and Sustainable Chemica			
15:40-16:40	1S04	(Department of Drug Science and Technology and Interdepartmental			
10.10.10.==		OGiancarlo Cravotto, Diego Carnaroglio, Marina Caporaso, Laura Rinaldi			
16:40-16:50					
16:50-17:45		企業PRタイム (白鳳)			
18:00-20:00		懇親会	(飛鳥)		
	L				

第2日目(11月18日) 午前の部

時間	A会場	B会場		
h4 [11]	食品 座長 加藤 俊作(かがわ産業支援財団)	プラズマプロセッシング 座長 矢嶋 龍彦(埼玉工大)・佐藤 進(アリオス㈱)		
9:00-9:20	マイクロ波加熱により調製した果実クチクラ膜の性質 Properties of Fruit Cuticular Membranes isolated by Microwave Treatment (阪大・エA、(株)サンアクティスB、長野県農協地域開発機構C) ○東順一A、金山裕亮B、大熊桂樹C、宇山浩A	微細液滴を含む大気圧低周波プラズマ法による液相浄化 Liquid phase purification using atmospheric low frequency plasma with minute droplets (千葉エ大・エ) 〇太田 佳以人、和田 喜成、尾上 薫		
9:20-9:40	マイクロ波加熱蒸留における分離の分子メカニズムの解明 2A02 Elucidation of Molecular Mechanism of Separation in Microwave Heating Distillation (九工大院・生命体工・生体機能A、九工大院・情報工・生命情報工B) ○渡邉 瑛A、原口 峻一A、岩橋 伸幸A、阿部 真樹子A、大内 将吉AB	マイクロ波液中プラズマの無電極化への試み A trial for electrodeless of the microwave induced plasma in liquid (アリオス株式会社) 〇佐藤 進、森 邦彦、有屋田 修		
9:40-10:00	マイクロ波照射による香酸柑橘成分ポリメトキシフラボンの抽出 Microwave-assisted Extraction of Flavones from Peels of Citrus sudachi and Citrus depressa (徳島大学A、阿部鐵工所B、徳島県立工業技術センターC) 〇津嘉山 正夫A、阿部 兼美B、岡久 修己C、新居 佳孝C、武知 博憲C	マイクロ波大気圧プラズマ源の開発 Development of a microwave-induced atmospheric pressure plasma source (アリオス株式会社) 〇森 邦彦、下村 浩司、佐藤 進、鈴木 浩明、有屋田 修		
10:00-10:20	電磁波照射による冷凍水産物の迅速均一解凍法 2A04 A rapid method for uniform thawing of frozen fishery products using electromagnetic radiation (東北大学院農) O佐藤 実、伊東 親哉、倉島 賢一郎、佐々木 美智子、芝 頼彦、山口 敏康、中野	カーボンフェルト間大気圧マイクロ波放電プラズマによる塩化マグネシウムの分解反応速度解析 Decomposition Benavior of Magnesium Chioride by Atmospheric Pressure Microwave Plasma Generated between Carbon Felts (埼玉工大院) 〇矢嶋 龍彦、鈴木 明裕		
10:20-10:30	休!			
10.20 10.00	有機合成・高分子合成・加工 座長 杉山 順一(産総研)	環境・材料プロセッシング 座長 望月 大(東工大)		
10:30-10:50	マイクロ波を用いた藻類バイオマスの水熱変換反応-反応系の誘電特性- Microwave-assisted hydrothermal conversion of algal biomass -Dielectric property of the reaction system- (高知大学A、京都大学生存圏研究所B、中部大学C) 〇椿 俊太郎A、平岡 雅規A、上田 忠治A、恩田 歩武A、西村 裕志B、樫村 京一郎 C、三谷 友彦B	マイクロ波照射による対流パターン形状制御に関する研究 Study on shape control of convection pattern in a binary mixture by microwave radiation (兵庫県立大・エ) 〇朝熊 裕介、高裕貴		
10:50-11:10	機能性錯体のマイクロ波熱触媒合成と誘電特性に関する研究 Microwave enhanced synthesis of functional metal complexes and their dielectric properties (ミネルバライトラボA、大阪大学B、京都大学C) 〇松村 竹子A、増田 嘉孝A、小川 眞吾A、柳田 祥三B、渡辺 隆司C、三谷 友彦C	マイクロ波照射中のリーゼガング現象の沈殿、拡散現象に関する研究 Precipitation and diffusion behaviors in Liesegang systems under microwave (兵庫県立大・エ) 金澤 佑真、田中 翔太、〇朝熊 裕介		
11:10-11:30	反応系の詳細な解析によるマイクロ波有機反応の分子メカニズム Molecular Mechanism of Microwave Organic Reaction Estimated from Detailed Analysis of Reaction Conditions (九工大院・生命体工・生体機能A、九工大院・情報工・生命情報工B) 〇内廣 啓太A、大内 将吉AB	5.8GHzマイクロ波加熱による含水物質からの水分回収 2B07 Water retrieve from hydrous substance by 5.8GHz microwave heating (産総研A、核融合研B) 〇佐野 三郎A、赤田 尚史B、田中 将裕B、高山 定次B		
11:30-11:50	酵素反応におけるマイクロ波効果と複素誘電率との関係 Study of microwave effect for an enzymatic synthesis with permittivity (産業技術総合研究所生物プロセス研究部門A、産業技術総合研究所ナノシステム研究部門B) 長島 生A、杉山 順一B、作田 智美A、〇清水 弘樹A	○原口 峻ーA,Mohammad Asif Mirdad A、岩橋 伸幸A、大内 将吉AB		

時間		A会場		B会場
12:50-14:20		ポスターセッション(白鳳)		
14:20-14:30	休憩			
14.20 14.30		無機合成・触媒化学 座長 朝熊 裕介(兵庫県立大)		装置・技術 座長 村井 正徳(高知県工業技術センター)
		液体原料直接導入型エタノール改質による水素生成プロセスの開発		リグニン系機能性ポリマー創成のための広帯域小型電磁波照射容器の設計
		Development of hydrogen production process from direct injection of liquid source	2B09	Design of a Broadband Small-Size Electromagnetic Wave Irradiation Applicator for Creation of Lignin-derived Functional Polymer
14:30-14:50	2A09			(京都大学·生存圈研究所A、中部大学B、日本化学機械製造株式会社C、CREST D)
		〇小野寺 亜由美A、佐藤 将太郎A、西岡 将輝B、宮川 正人B、宮沢 哲B、伊達 秀		〇中島 陵AD、三谷 友彦AD、篠原 真毅AD、樫村 京一郎BD、野﨑 義裕CD、近
		文A		田 司CD、渡辺 隆司AD
		マイクロ波固体触媒法を用いたデカリンからの水素エネルギー発生に関する研究		同軸構造の対称性を利用した複数試験管に対するマイクロ波アプリケータの設計
14:50-15:10	2A10	Dehydrogenation of decalin by using microwave heterogeneous catalysis system	2B10	Design of a Microwave Applicator for Multiple Test Tubes Using Symmetric Property of Coaxial Structure
		(上智大字•埋土)		(京都大学·生存圏研究所A、CREST B)
		〇鎌田 桃子、堀越 智		〇三谷 友彦AB、岩永 直也A、篠原 真毅AB
		Pd/SiC触媒の触媒活性持続に及ぼすマイクロ波照射の効果		マグネトロン式と半導体式マイクロ波電源の特性と使い方について
15:10-15:30	2A11	An Effect of Microwave Irradiation on Pd/SiC Catalyst for Prolonging the Catalytic Life (高知工科大·環境理工)	2B11	We explain characteristic and how to use microwave generator of magnetron and semiconductor method. (富士電波工機株式会社)
		(高知工件人・環境理工) 浅原 時泰、栗林 由季、王 鵬宇、小廣 和哉、〇西脇 永敏		(富工电波工機体式会社) 〇吉田 睦、仙田 和章
				マイクロ波加熱装置を用いた車両用暖房システム
		A applymention of Estavification by Michaeles Hosting		Automative Heating System by wing Microways
15:30-15:50	2A12	Acceleration of Esterification by Microwave Heating	2B12	Automotive Heating System by using Microwave
		(早大ナノ理工A,愛媛大工B、早大院先進理工C)		(千葉大·本A、東工大院·工B)
		〇小島 秀子A、宮崎 公規B、朝日 透C	<u> </u> 休憩	〇藤井 知A、望月 大B、米谷 真人B、鈴木 榮一B、和田 雄二B
15:50-16:00		有機合成・無機合成・触媒化学 座長 小島 秀子(早稲田大学)	小思	装置・技術・基礎理論・物性 座長 三谷 友彦(京都大学)
		マイクロ波照射下でのアリルオキシベンゼン類のクライゼン転位に及ぼす置換基効		反射鏡を用いた大規模マイクロ波加熱炉に関する検討
		Substituent effect for the Claisen rearrangement of allyloxybenzenes under microwave irradiation		A GO 1 CT 1 1 M THE TO THE TO THE TOTAL THE TO
16:00-16:20	2A13	(立命館大学・生命科学部・応用化学科)		(三菱電機株式会社)
		〇岡田 豊、井上 妙子、宮原 舞子		〇瀧川 道生、本間 幸洋、佐々木 拓郎、稲沢 良夫、宮下 裕章
		マイクロ波父番電磁界の印加による光誘起電子移動反応の非熱的な促進とその物理的機		マイクロ波と弾性波の考察
	2A14	構の理解 Non-thermal acceleration on photo-induced electron transfer by applied microwave alternating		
16:20-16:40		electromagnetic field and the physical mechanisms of this acceleration		Studies on Microwave Excired Elastic Motions
		(東工大院·工A、千葉大B)		(中部大学A、東北大学B、核融合科学研究所C)
		〇岸本史直A、今井嵩A、藤井 知B、望月 大A、米谷 真人A、鈴木 榮一A、和田 雄		〇佐藤 元泰A、福島 潤B、高山 定次C
		コアシェル型セオフイト触媒へ均一糸反応におけるマイクロ波熱的非平衡状態の温		方形導波管内の電磁界分布の考察
10.40 17.05		度推定		
16:40-17:00	2A15	Temperature estimation of the reaction field in the core shell zeolite catalyst under the thermal non-equilibrium state induced by microw		Consideration of Electromagnetic Distribution in Rectangular Waveguides (ミクロ電子株式会社)
		(東工大院·工) 〇笹木 亮、望月 大、米谷 真人、鈴木 榮一、和田 雄二		〇武藤彰男
	2A16	〇世木 元、圭月 人、木台 具人、野木 栄一、和田 雄二 電磁場分布及び熱流解析シミュレーションを用いた、マイクロ波照射下におけるエ		
		チルベンゼンの触媒的脱水素反応の解析	2R16	微生物培養における至適マイクロ波出力の存在
		Analysis of catalytic dehydrogenation of ethylbenzene under microwave irradiation using electromagnetic and thermal flow simulation		Optimal Microwave Output in Microbial Cultivation
17:00-17:20				(九工大院、生命体工·生体機能A、九工大院·情報工·生命情報工B、東理大·理
		(東工大工A、千葉大B)		「(九工人院、生命体工・生体機能A、九工人院・情報工・生命情報工B、泉壁人・壁 工・応用生物C、(株)ベセルD)
		〇羽石 直人A、望月 大A、米谷 真人A、鈴木 榮一A、藤井 知B、和田 雄二A		□○永吉 航A、白石 新A、中間 遼太B、吉村 武朗C、児玉 亮D、大内 将吉AB
18:00-20:00		マイクロ波技術ナイト	・セッシ=	
10.00 E0.00	<u> </u>			The second secon

第3日目(11月19日) 午前の部			
時間	時間マイクロ波工業応用セミナー(高知県工業技術センター)		
9:00-9:05	オープニング		
9:05-9:45	未利用森林資源からの空気浄化剤の開発 - 減圧式マイクロ波水蒸気蒸留法による事業化の試み - (独)森林総合研究所 バイオマス化学研究領域 樹木抽出成分研究室 室長 大平 辰朗 氏		
9:45-10:25	マイクロ波常温乾燥における水分移動と収縮変形 九州工業大学大学院 工学研究院 機械知能工学研究系 教授 鶴田 隆治 氏		
10:25-10:35	休憩		
10:35-11:05	マイクロ波の液中への直接照射とその応用 高知県工業技術センター 主任研究員 村井 正徳 氏		
11:05-11:35	マイクロ波抽出とカンキツ精油について 高知大学地域連携推進センター土佐フードビジネスクリエーター人材創出拠点 特任教授 沢村 正義 氏		
11:35-12:30	マイクロ波精油抽出装置見学会		